CIZQCD - Part 1

;S
GOETHE g,
UNIVERSITAT

FRANKFURT AM MAIN

M. Bach?, O. Philipsen', C. Pinke' and A. Sciarra!

T Institut fiir Theoretische Physik, Goethe Universitit, Frankfurt am Main, Germany

* Frankfurt Institute for Advanced Studies / Institut fiir Informatik, Goethe-Universitit, Frankfurt am Main, Germany

We present the Lattice QCD (LQCD) application CI2QCD, which is based on OpenCL and can be run on Graphic
Processing Units (GPUs) as well as on common CPUs. We focus on implementation details as well as performance
results of selected features. CI2QCD has been successfully applied in LQCD studies at finite temperature and density
and is available at http://code.compeng.uni-frankfurt.de/projects/clhmc.

Lattice QCD

e Importance Sampling: Generate gauge configurations {U,y, } using Boltzmann-weight p|U, ¢| = exp {—Seg|U, ¢|}
with Hybrid-Monte-Carlo (HMC) algorithm |Duane et al., 1987|.

— Observables:

(K) ~ 3 KU

— Effective action S,g proportional to inverse fermion matrix D!,

e Most expensive ingredient to current LQCD simulations: fermion matrix inversion

D=1 = ¢=D""¢.

— Carried out with Krylov subspace methods, e.g. conjugate gradient (CG);
— Matrix-vector product D¢ has to be carried out multiple times.

e LQCD functions local (depend on a number of nearest neighbours only) = very well suited for parallelization.

e LOCD operations limited by memory bandwidth. Most expensive part: Derivative part of D, so-called Ip.
Number of FLOPs

Number of Bytes to read and write

— Wilson fermions: p(Ip) ~ 0.57
— Staggered fermions: p(Dpg) ~ 0.35

Numerical density p =

= LQCD requires hardware with a high memory-bandwidth to run effectively
= Meaningful measure for efficiency is achieved bandwidth

OpenCL and Graphic Cards

CHIp PEAK SP|PEAK DP|PEAK BW LOEWE -CSC

ANID Radeon HD 5570 c T s | T GPU nodes 756

acaeon YPpress
AMD Radeon HD 7970 Tahiti 3789 047 264 gggiﬁggs zlxoni\gE)fZO? ,
AMD FirePro S10000 Tahiti I%x3410 | 2x850 | 2x240 D
NVIDIA CeForce GTX 680 Kepler 3000 258 192 SANAM
NVIDIA Tesla K40 Kepler 4290 1430 2883 GPU nodes 304
AMD Opteron 6172 Magny-Cours 202 101 43 GPUs/node | 2 x AMD 510000
Intel Xeon E5-2690 Sandy Bridge EP 371 186 51 CPUs/node 2 x Xeon E5-2650

Table 1: Theoretical peak performance of current GPUs and CPUs. SP and DP denote
single and double precision, respectively. BW denotes bandwidth.

Table 2: AMD based clusters where CEQCD
was used for production runs.

e Graphics Processing Units (GPUs) surpass CPUs in peak performance as well as in memory bandwidth (see Table 1);
e GPUs can be used for general purposes;

e Many computing clusters are accelerated by GPUs, for example LOEWE -CSC in Frankfurt |Bach et al., 2011] or
SANAM |[Kalcher et al., 2013] (see Table 2);

e GPUs constitute inherently parallel architecture;
e LOCD applications are always memory-bandwidth limited = they can benefit from GPUs tremendously;

e In recent years the usage of GPUs in LQCD simulations has increased, mainly relying on CUDA as computing language,
applicable to NVIDIA hardware only?.

| Private memory ‘ Work — group ‘ Work item
‘ Thread

OpenCL | Device | Compute Unit | Processing element ‘ Local memory

CUDA GPU | Multiprocessor

Scalar core ‘ Shared (per-block) memory ‘ Local memory ‘ Block

Table 3: OpenCL and CUDA terminology.

e Hardware independent approach to GPU applications given by Open Computing Language (OpenCL)Q.

e OpenCL is an open standard to perform calculations on heterogeneous computing platforms = GPUs and CPUs can

be used together within the same framework, taking advantage of their synergy and resulting in a high portability of
the software. First attempts to do this in LQCD in [Philipsen et al., 2011].

e Sce Table 3 for a comparison of CUDA and OpenCL terminology:.

e An OpenCL application consists of a host program coordinat-
ing the execution of the actual functions, called kernels, on
computing devices (Figure 1). A device can for instance be a

GPU or a CPU.

Compute

{ Host } Unit :
Processing

| Element

Compute
Device

e Although the hardware has different characteristics, GPU pro-

()) ocramming shares many similarities with parallel programming
% % % @ % % of CPUs. A computing device consists of multiple compute
= units. When a kernel is executed on a computing device, actu-

) T ’ ally a huge number of kernel instances is launched. They are
mapped onto work-groups consisting of work-items. The work-
items are guaranteed to be executed concurrently only on the
processing elements of the compute unit (and share processor
resources on the device).

Figure 1: OpenCL concept

e Compared to the main memory of traditional computing systems, on-board memory capacities of GPUs are low, though
increasing more and more>. This constitutes a clear boundary for simulation setups. Also, communication between
host system and GPU is slow, limiting workarounds in case the available GPU memory is exceeded. Nevertheless, as
finite T" studies are usually carried out on moderate lattice sizes (in particular Ny > N7), this is less problematic for
the use cases CI2QCD was developed for.

ISee https://developer.nvidia.com/cuda-zone and the QUDA library: https://github.com/lattice/quda .
2See https://www.khronos.org/opencl .
3For instance, the GPUs given in Table 2 have on-board memory capacities of 1 GB and 3 GB, respectively.

CIEQCD Features

FAIR

Helmholtz International Center

HGS-HIRe for FAIR

Helmholtz Graduate School for Hadron and lon Research

e [irst OpenCL application for Wilson fermions |Bach et al., 2013|, focusing on Twisted Mass Wilson fermions
|Frezzotti and Rossi, 2004; Shindler, 2008| (automatic O(a) improvement at maximal twist);

e Staggered fermions in standard formulation;

e Improved gauge actions;

e Standard inversion and integration algorithms;

e ILDC-compatible 10%;
e RANLUX Pseudo-Random Number Generator (PRNG)? [Liischer, 1994].

Executables:

e HMC: Generation of gauge field configurations for Ny = 2 (Twisted Mass) Wilson type fermions using the HMC
algorithm |Duane et al., 1987|;

e RHMOC: Generation of gauge field configurations for staggered type fermions using the Rational HMC algorithm
|Clark and Kennedy, 2007|;

e SUSHEATBATH: Generation of gauge field configurations for SU(3) Pure Gauge Theory using the heatbath
algorithm |Cabibbo and Marinari, 1982; Creutz, 1980; Kennedy and Pendleton, 1985|;

e INVERTER: Measurements of fermionic observables on given gauge field configurations:

e GAUGEOBSERVABLES: Measurements of gauge observables on given gauge field configurations.

4Via LIME, see http://usqcd. jlab.org/usqcd-docs/c-lime .

’See https://bitbucket.org/ivarun/ranluxcl .

CIEQCD Code Structure

e Host program of CI2QCD set up in C++ = allows for independent program parts using C++ functionalities and

naturally provides extension capabilities.

e Cross-platform compilation provided using CMAKE framework®.

e The code structure of CIZQCD is displayed in Figure 2. Two main components:
—The physics package, representing high-level functionality;

—The hardware package, representing low-level functionality.

The meta package collects what is needed to control the program execution and IO operations.

e All parts of the simulation code are carried out using OpenCL kernels in double precision.

e OpenCL kernels source files:

— Contain concrete implementations of basic LQCD functionality like matrix-matrix multiplication, but also more

complex operations like the ID or the (R)HMC force calculation:
— OpenCL language based on C99;

— Compilation and execution is handled within the hardware package:;

— Kernels in a certain way detached from host part (host can continue independently of kernel execution status)
= Clear separation into administrative part (host) and performance-critical calculations (kernels).

See http://www.cmake.org .

ALEO TS

LATTIEES

Implementation of algorithms using

Lattices and Fermionmatriz objects

Representations of lattice fields

IOV TS

Operations on fields

e GAUGEFIELD

Matriz operations on ferm

vion fields

e WILSON

RS IASL LTS

e GAUGEOBSERVABLES

o HIC e FERMIONFIELD e TWISTED MASS o (y)
e GAUGEMOMENTA o STAGGERED e CORRELATORS
e RHMC
HEATBATH
¢ ANevsz Sovzezs
e SOLVER Y
e INTEGRATOR e POINT o 72
e METROPOLIS e RANLUX e GAUSSIAN e 74
LUFFLRS cons
Representation of OpenCL buffer Ezecution of specific OpenCL kernels
Device-dependent: AOS or SOA Meta information about kernels
e SU3 e SPINOR ALGEBRA
e SU3VEC e FERMIONS
e SPINOR e MOLECULAR DYNAMICS
o GAUGEMOMENTA e GAUGEFIELD f‘/ﬁ
STE7ZNS LETE VL COIALER ﬂﬁ/

Repr. of current architecture

Provides available OpenCL devices

Pr

Represenation of specific device
ovides Code modules

Compilation of OpenCL kernels
Reread functionality

7
N

4 TS
|

G e) 4
A / v

7

|

NV EC T AZRNVELS

Code for execution on device
Compiled at runtime

e PLAQUETTE
e SAXPY

e DSLASH T
e GAMMAS

Figure 2: CEQCD code structure (illustrative). Packages and substructures are realized as namespaces.

e The physics package provides representations of the physical objects like gauge fields or fermion fields. In addition,
the corresponding classes provide functionality to operate on the respective field type. Moreover, algebraic operations
like saxpy are provided. Similarly, the various fermion matrices are provided. This allows for the implementation of
high-level functionality without knowing details of the underlying OpenCL structure. For example, the (R)HMC or
the calculation of observables are completely independent of system or kernel specifics. In other words, the physics
package works as an interface between algorithmic logic and the actual OpenCL implementation.

e [n turn, the hardware package is destined to handle the compilation and execution of the OpenCL kernels. The
hardware: :System class represents the architecture available at runtime. The latter can provide multiple com-
puting devices (i.e. CPUs and/or GPUs), which are represented by hardware: :Device objects and initialized
based on runtime parameters. Kernels are organized topic-wise within the hardware: :code namespace, e.g. in
the hardware: :code: :Fermions class. These classes take over the calling logic of the kernels and provide meta
informations like the number of FLOPs a specific kernels performs. The hardware: :Device class has each of the
hardware: :code classes as singleton objects, i.e. they are initialized the first time they are needed. During this
process, the OpenCL kernels are compiled.

e Memory management is performed by the hardware: :buffers classes, which also ensure that memory objects are
treated in a Structure of arrays (SOA) fashion on GPUs, which on these is crucial for optimal memory access as

opposed to Array of structures (AOS).

e OpenCL kernels are compiled at runtime using the OpenCL compiler class. In OpenCL, this is mandatory as the
specific architecture is not known a priori. On the one hand, this introduces an overhead, but on the other hand
allows to pass runtime parameters (like the lattice size) as compile time parameters to the kernels, saving arguments
and enabling compiler optimization for specific parameter sets. In addition, the compiled kernel code is saved for
later reuse, e.g. when resuming an HMC chain with the same parameters on the same architecture. This reduces
the initialization time. Kernel code is common to GPUs and CPUs, device specifics are incorporated using macros.

